Длина УКВ антенны

Антенны FM диапазона

Антенны для радио ФМ диапазона

Для хорошей работы каждого радиоприемника, требуется антенна, способная обеспечить усиление сигнала на входе и его очистку от шума и помех во время преобразования в звук. Антенны FM диапазона легко справляются с этой задачей, позволяя получить более четкий прием сигнала, избавить от шума, улучшить звук радиопередачи и воспринимать большее число радиоканалов. Повышая чувствительность приемного оборудования, работающие на FM волнах радиоантенны, стали незаменимым элементом конструкции любого радиоприемника. Наш интернет-магазин реализует высококачественные антенны для радио по их минимальной стоимости.

Преимущества использования ФМ антенн для радио

Реализуемые нашим магазином FM антенны, изготавливаются из высоконадежных материалов и бывают двух видов: линейные и изделия для приема бегущей поверхностной волны. Кроме того, антенны для радиоприемников производятся как в стационарном исполнении, так и в мобильном, что только увеличивает их потребительскую востребованность. Антенная конструкция, работающая в ФМ диапазоне, предназначена для преобразования эфирных волн в электроток, который поступает на радиоприемник. К эксплуатационным достоинствам таких антенн относятся следующие:

  • устранение помех и шума при приеме сигнала;
  • оптимальная дальность работы;
  • невысокая стоимость и простота установки;
  • высокая чистота звука, повышенная чувствительность изделия;
  • хорошие направленные свойства, повышающие качество трансляции;
  • расширенный диапазон приема, увеличивающий количество каналов.

Наша компания предлагает по-настоящему выгодно купить радиоантенны FM диапазона, отличающиеся надежностью, эксплуатационной эффективностью, расширенным списком принимаемых каналов, доступной ценой и качеством изготовления.

Поможем выбрать и купить Антенны FM диапазона в нашем интернет-магазине с доставкой до дома или офиса. Мы осуществляем доставку покупок по Москве и Московской области, а так же отправляем в другие города России транспортной компанией или Почтой России. В ассортименте более 39 позиций. Постоянным клиентам предоставляем скидки на антенны fm диапазона.

ТВ антенна. Виды и конструкция. Работа и применение. Особенности

ТВ антенна – это устройство для улучшения качества приема волн телевизионных каналов. Принятый с ее помощью сигнал передается на телевизор по коаксиальному кабелю, который обеспечивает минимальное искажение. Антенны могут использоваться для приема аналогового, цифрового либо спутникового сигнала, что зависит от их конструктивных особенностей. На данный момент на территории России самыми распространенными являются антенны аналогового телевидения. Его трансляцию ведет Останкинская башня, используя метровые и дециметровые волны.

Виды телевизионных антенн

Устройство является очень распространенным, поскольку практически ни один телевизор не сможет работать без антенны, за исключением тех, которые подключаются к кабельному телевидению. Различные населенные пункты имеют разную удаленность от ретранслятора. Одни дома могут быть расположены в сотнях километрах от них, а другие всего в нескольких шагах. Этот фактор напрямую влияет на мощность антенны, которая позволит принимать сигнал приемлемого качества, компенсируя удаленность.

Все ТВ антенны можно разделить на 3 категории:
  • Комнатные.
  • Уличные.
  • Спутниковые.
Комнатная ТВ антенна

Эти устройства устанавливаются внутри помещения. Они самые дешевые, а кроме этого не требуют сложного монтажа. При выборе в их пользу не придется прокладывать коаксиальный кабель на улицу, проделывая сквозное отверстие в фасадной стене или раме окна. Огромным недостатком данной конструкции является слабый сигнал. В связи с этим их устанавливают только в зонах с расстоянием до 30 км от телецентра или ретранслятора. На более дальней дистанции получаемый сигнал будет иметь сильное искажение, что не позволит просматривать качественную картинку телепередач.

Комнатные антенны также могут оснащаться усилителем сигнала. Чем дальше от ретранслятора, тем более мощный усилитель потребуется. Данные устройства по конструкции разделяют на два вида:
  • Стержневые.
  • Рамочные.
Стержневые

Это самые слабые комнатные устройства. Они имеют 2 или 4 телескопических усов-вибраторов, которые и улавливают сигналы. Их длина обычно не превышает 1 м. Они подключаются к специальной подставке, которая внутри имеет согласующий трансформатор, передающий сигнал на коаксиальный кабель и дальше на телевизор. Использование такой конструкции имеет свои преимущества. Она легкая, а благодаря телескопическим усам может компактно складываться для транспортировки.

Если ретранслятор сигнала находится близко, усы можно сделать короткими, чтобы они не занимали полезное пространство. При отдаленности телебашни их высота ставится на максимум, что позволяет компенсировать расстояние. Зачастую стержневая ТВ антенна идет в комплекте с телевизором. Большинству она известна под народным названием «рожки». Такие антенны хорошо принимают волны в метровом диапазоне. Для проведения их настройки необходимо менять не только высоту, но и расстояние между усами, для чего предусматривается их крепление с помощью шарниров. Большим недостатком стержневой антенны является отсутствие универсальной настройки. Выставив положение усов для хорошего приема одного канала, второй начнет транслироваться на экране с помехами.

Рамочные

Более или менее совершенными являются устройства рамочного типа. Они улавливают сигналы в дециметровом диапазоне. Эти устройства имеют металлический контур, выполненный в виде рамки, которая закреплена на подставке. Такое оборудование все же лучше чем стержневое, но все равно далеко от идеала. Его не получится использовать при значительной удаленности от ретранслятора или телебашни.

Уличная ТВ антенна

Более мощными являются наружные антенны для приема телевизионного сигнала. Они устанавливаются на возвышении в зонах открытой видимости. Зачастую такие антенны можно увидеть на крышах многоэтажных домов. Жители частного сектора устанавливают их на вершине высокой металлической трубы зафиксированной вертикально. В этом случае обеспечивается возвышение на 10-15 м, что позволяет компенсировать искажение волн стенами домов и ветвями деревьев. Фактически, чем больше вокруг преград для сигнала, тем на более высокое расстояние необходимо поднять антенну.

Данные устройства бывают различной внешней конструкции, но все они разделяются на 2 вида по принципу действия:
  • Активные.
  • Пассивные.
Активная конструкция

Такая ТВ антенна имеет усилитель мощности, что позволяет принимать сигналы намного качественнее и компенсировать помехи. Подобные устройства выбираются в том случае, если ретранслятор находится далеко, а перед антенной имеются серьезные преграды рассеивающие сигналы, такие как дома, лесные массивы и линии электропередач. Также активное устройство потребуется, если установка ведется на низине, когда нет прямой видимости между источником трансляции и точкой приема.

Активные антенны могут передавать сигнал на несколько телевизоров. Для этого необходимо просто использовать специальный тройник для коаксиального кабеля. Применяемый у них усилитель требует отдельного источника питания. Для этого предусматривается понижающий блок на 12 вольт. Он подключается к коаксиальному кабелю у телевизора и подает напряжение к точке приема к усикам-вибраторам, возле которых находится скрытая в герметичном корпусе плата усилителя.

Пассивные устройства

Такие антенны стоят дешевле, но их можно выбирать только в том случае, если имеется прямая видимость без препятствий между точкой приема и оборудованием трансляции. В таких условиях использование усилителя не нужно. Жители отдельных домов могут проживать слишком близко к транслирующей башне, поэтому им нужна именно такая антенна. Но даже она может принимать сигнал с искажением от того, что он слишком сильный. В этом случае потребуется установка специального оборудования – аттенюатора. Он позволяет компенсировать этот недостаток, уменьшив силу сигнала до приемлемого для телевизора уровня.

Спутниковая антенна

Безусловно, самым лучшим оборудованием для получения телевизионного сигнала является спутниковая ТВ антенна. Она улавливает трансляцию не от расположенной на земле телебашни, а со спутника. Это массивная конструкция, которая стоит в разы дороже, чем уличные и тем более комнатные устройства. Антенна состоит из большой тарелки из металла окрашенной в белый цвет, которая выступает в роли экрана для фокусировки спутниковой трансляции. Попавшие на нее волны улавливаются конвертером, который выполнен в виде небольшой головки размером немного меньше кулака. Он настраивается на определенный спутник и принимает все телеканалы, которые тот передает. Количество конверторов на антенне отличается в зависимости от региона, но редко превышает 3 штуки.

Сигналы обычных трансляторов на земле и спутниковых отличаются, поэтому телевизор не может их воспринимать. В связи с этим между инвертором и телевизионным экраном устанавливается ресивер. Он представляет собой небольшое устройство, габариты которого немного меньше чем DVD приставки. Его задача заключается в трансформации спутникового сигнала в стандартный для телевизора.

Обычно, если в доме имеется два телевизора, то для каждого из них потребуется отдельная ТВ антенна, что обусловлено спецификой конвертера. При приеме одного канала со спутника он не может одновременно обрабатывать другой канал. Иными словами, если провести такое подключение, то все телевизоры будут показывать один телеканал.

Спутниковые устройства передают на телевизор намного более качественный сигнал, чем наземные станции, поэтому пользуются большой популярностью, особенно в регионах, где трансляторы находится очень далеко. Даже вместе с очень сложным рельефом удастся смотреть телевизионные программы с идеальной картинкой, что было бы невозможно при использовании наружной антенны. Помехи при трансляции со спутника могут возникать только в случае сильной грозы или интенсивного снегопада.

Спутниковые антенны имеют массу преимуществ. Они безусловно лучше остальных видов, но у них имеется и недостаток. Помимо большей стоимости, они требуют квалифицированного обслуживания. Провести их установку самостоятельно вряд ли удастся, поскольку нужно изначально проверить качество сигнала и выставить тарелку в правильном направлении под нужным углом. Кроме этого, чтобы ресивер работал правильно, необходимо записать частоты каналов трансляции, которые периодически меняются. После прошивки можно будет просматривать все каналы на протяжении нескольких месяцев, после чего некоторые из них начнут исчезать, пока из сотен не останется всего несколько штук. Потребуется снова проводить перепрошивку. Сделать это самостоятельно сложно, потому что требуется специальный кабель и программное обеспечение с кодами каналов. Придется периодически обращаться в специализированные сервисные центры, услуги которых не бесплатны.

Если при нормальных погодных условиях спутниковая ТВ антенна начинает транслировать сигнал с помехами, то скорее всего это связано с отсутствием прямой видимости между тарелкой и спутником. Обычно это связано с разрастанием деревьев. Достаточно обрезать ветки и качество сигнала восстанавливается. Кроме этого, проблема может заключаться в изменение положения конвертера. При монтаже антенны он выставляется под правильным углом относительно расположение спутника. Если угол немного меняется, то качество приема искажается. Обычно во время сильного ветра плохо закрепленная тарелка может немного повернуться, буквально на несколько сантиметров. В этом случае требуется ее перенастройка. Это довольно сложно сделать без специального диагностического оборудования.

В. Т. Поляков, RA3AAE

1. История «метелки»

Метелочная антенна известна очень давно, еще с 30-х годов прошлого века, и иногда применяется до сих пор в качестве радиоприемной для ДВ и СВ диапазонов. Казалось бы, что в ней необычного или таинственного? Ее описание есть во многих журналах и книгах, и уж непременно встречается в изданиях для начинающих. Общепринято мнение, что в электрическом отношении она представляет собой вертикальный провод, эффективность которого несколько улучшена емкостной нагрузкой на верхнем конце — «метелкой». Антенна удобна отсутствием горизонтальной части и требует для установки только одной мачты.

Иногда обходились и без мачты, закрепляя «метелку» на кронштейне к дымовой трубе или верхней части стены дома . Цитируем:

«Производством таких антенн занимается фирма Central Equipment Ltd, утверждающая в своих рекламных извещениях, что разработанная ею антенна, помимо того, что она не загружает крыш зданий, имеет и ряд преимуществ в отношении приемных свойств».

Последняя фраза загадочна… Искать в интернете фирму и ее рекламный проспект 1935 года было почти бессмысленно, тем не менее, фирма с таким названием нашлась в Канаде, но основана она была в 1958-м. Нам остается привести из лишь описание конструкции: «…антенна собрана в виде целого пучка коротких кусков медной проволоки; длина отдельного куска проволоки равна около 23 см (рис. 1). Нижним своим концом этот пучок вставляется в массивный фарфоровый изолятор, ко дну которого присоединен провод длиной около 15 м, соединяющий антенну с приемником. Фарфоровый изолятор вставляется в кольцо железного гальванизированного кронштейна, который может быть прикреплен гвоздями либо к дымовой трубе, либо к фронтону стены дома. Провод, идущий от антенны к приемнику, в целях изоляции его от крыши и стены дома, прикрепляется к специальным кронштейнам-изоляторам, устанавливаемым на карнизе стены и у самого ввода… Ввод устраивается из эбонитовой трубки». Рисунок я не смог сканировать из журнала из-за плохого качества, поэтому перерисовал с возможно большей точностью. Похожий рисунок приведен в . В оригинале угол разведения проводов в пучке не превосходил ± 15 градусов.

Обращает на себя внимание тщательность изоляции антенны. Вместе с антенной фирма выпускала и заземление, сконструированное, на мой взгляд, весьма эффективно и разумно. В землю зарывалась вертикальная медная труба с отверстиями, заполненная гигроскопическим материалом Silitit, по утверждению рекламного проспекта обладающего способностью впитывать влагу из земли. Кстати сказать, наши радиолюбители, не имея хитрого заморского материала, использовали для той же цели обычный древесный уголь. К верхнему концу трубы присоединялся провод заземления, а к нижнему — пучок медных проводов, разведенных в разные стороны — та же «метелка», но перевернутая, направленная в землю. Такое заземление говорит о грамотности фирмы.

В последующих описаниях метелочной антенны рекомендовали поднимать ее на шесте , собирать пучок из 19, 37 или 61 куска (?!?) голого медного провода, выбирать длину кусков от 0,5 до 1 м (!) и разводить их на угол от 45 до 90 градусов. Естественно, емкость такой могучей «метлы» должна быть больше, а указание о числе кусков провода представляется абсурдным. Еще оправдано число 7, оно дает плотную упаковку в изоляторе — один провод в центре и шесть по окружности, но 61 или 62, какая разница?

Вот что смущало меня много лет. Для создания емкости «метелка» — одна из самых неоптимальных конструкций! Емкостные нагрузки применяли еще Г. Герц и А. С. Попов в виде пластин на концах вибратора, Н. Тесла в виде тороида на вершине своей высоковольтной башни, значит, делать их умели, но никто не применял «метелок». Представляется, что кольцо из проволоки с несколькими спицами, размером с «метелку», будет обладать той же емкостью, но гораздо меньшей массой, и меньшим ветровым сопротивлением. Схематически оптимальная емкостная нагрузка показана на рис. 2.

В то же время, еще с середины позапрошлого века известны были кисточки из тонких проводов для снятия заряда с пластин электростатических машин — «метелки» в миниатюре. Они и сейчас применяются с той же целью на крыльях самолетов и мачтах больших антенных сооружений. Если бы «метелку» показали человеку, никогда не слышавшему о радиоволнах и антеннах, он бы с уверенностью сказал, что это устройство для «распыления» электричества в атмосферу! Оно чем-то напоминает и перевернутую «люстру» Чижевского.

2. Атмосферное электричество.

Вспомним, что нам известно об атмосферном электричестве, поскольку никакого «своего» электричества мы к метелочной приемной антенне не подводим. В приземном слое воздуха существует градиент потенциала, т. е. напряженность электростатического поля, в среднем около 130 В/м. Это значит, что на высоте нашей головы потенциал атмосферы превосходит 200 В, но мы этого не чувствуем, потому что воздух — хороший диэлектрик, и ток, текущий через наше тело, крайне мал. Верхние слои атмосферы — ионосфера — проводят ток, поскольку молекулы воздуха там ионизированы, в основном, солнечным ультрафиолетовым излучением. Ионосфера заряжена положительно относительно земли, и ее потенциал достигает многих сотен киловольт. Таким образом, мы живем как бы между обкладками большого сферического воздушного конденсатора размером во весь Земной Шар.

Тем не менее, и у поверхности Земли есть небольшой ионный ток, направленный сверху вниз. Его плотность, измеренная чувствительными приборами, составляет несколько пикоампер на квадратный метр. По всей же поверхности Земли этот ток достигает тысяч ампер. Современной науке еще не совсем ясны механизмы генерации атмосферного электричества, по одной из теорий отрицательный заряд к Земле переносят молнии, ведь в каждый момент на Земле бушует около двух тысяч гроз. Перед грозой, и в других случаях активной электризации в атмосфере напряженность поля сильно возрастает. Наш ведущий специалист по атмосферному электричеству пишет :

«При высоких значениях электрического поля у земной поверхности порядка 500…1000 В/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т. д.), который иногда становится видимым (т. н. огни св. Эльма, особенно яркие в горах и на море). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землей и атмосферой».

Об этом эффекте знали еще во времена Б. Франклина, почитайте интереснейшую статью основателя искусственной аэроионизации А. Л. Чижевского : «Начиная с 1757 г. Беккариа (Beccaria) производил в Болонье наблюдения над этим явлением, называя его «электричеством хорошей погоды». Он употреблял для опытов металлический стержень, который, присоединив сперва на короткое время к земле, соединял затем с электроскопом. Тотчас же начиналось медленное положительное заряжение стержня почти до постоянного значения».

Это значение соответствует, естественно, потенциалу атмосферы вблизи острия. Я и сам наблюдал подобное явление, когда присоединил к только что поставленной антенне в виде длинного провода (около 30 м) обыкновенный школьный электроскоп. Несмотря на пасмурную погоду, напряжение на антенне в течение нескольких секунд возрастало до примерно 1,5 кВ, потом где-то тихо щелкало (пробивалось) и стрелка падала до нуля. Процесс повторялся периодически. Любопытно, что уже через пару недель изоляторы антенны загрязнились в московском воздухе, и явление больше не наблюдалось.

3. Ток «из воздуха».

Метелочная антенна соединена с землей через катушку приемника (контурную, или связи), поэтому ее потенциал равен потенциалу земли, который обычно принимают за нулевой. В то же время воздух на высоте 15 м (рекомендованная выше длина снижения) имеет потенциал + 2 кВ, что и вызывает истечение отрицательных зарядов с острия. Это электроны, но существуют они очень недолго, ведь путь свободного пробега в воздухе при нормальном атмосферном давлении не достигает и микрона. Ударяясь в молекулы воздуха, они образуют отрицательные ионы, движущиеся преимущественно вверх, вдоль силовых линий электростатического поля атмосферы. В проводе антенны возникает постоянный ток. Он тем больше, чем больше проводов в «метелке».

Приехав на слет накануне доклада, я объявил его тему, и тут же получил интереснейший вопрос. Один из участников слета слышал, что острия проводов «метелки» надо затачивать! Надо ли, и зачем, спросили меня. Осталось только ответить, что надо, и чем острее, тем лучше. Дело в том, что силовые линии поля концентрируются у острия, и напряженность поля Е возрастает. У самого острия ее подсчитывают по очень простой формуле: E =U/r , где U — потенциал, r- радиус кривизны острия. Ионизация начинается при Е = 107…108 В/м , поэтому желательно сделать радиус кривизны острия порядка 10 микрон или еще меньше, если это только возможно механически. Электролитическим способом получают и еще более тонкие острия. Итак, у нас есть шанс получить тихий, или даже коронный разряд с метелочной антенны и ток в антенной цепи. Но зачем это нам?

Должен заметить, что разряд с антенны создает столб ионов над ней. Он в какой то мере проводит ток, точнее, сам является током, направленным сверху вниз (принятое направление тока противоположно движению электронов и отрицательных ионов). Приходящая радиоволна модулирует этот ток, а он идет в антенну и через ее снижение в приемник. Другими словами, ионный столб увеличивает действующую высоту антенны!

В одной старой книжке я прочитал интересное наблюдение: прием дальних станций улучшался зимним вечером в безветренную погоду, когда в домах поселка затапливали печи. Тогда я посчитал это совершенной ерундой — ну какое отношение могут иметь печи к радиоприему! Теперь я так не считаю. Вертикальный столб дыма из трубы — это поток ионизированного воздуха, хоть и слабо, но проводящего. Получается высокая пассивная антенна, принимающая и переизлучающая радиоволны. Около нее и обычная антенна принимает лучше.

Можно ли использовать атмосферное электричество для практических целей? Было много попыток и даже получены некоторые результаты. В университетском городке на западе США живет и работает профессор Олег Ефименко. Он повторил некоторые конструкции старинных электростатических моторов и усовершенствовал их, подняв КПД до 60…80%. Моторы, соединенные с высокой антенной, вращались, но мощность их мизерна. Пользоваться же подобными игрушками в грозу просто опасно. Судя по опубликованным данным, ток с антенны измеряется наноамперами, а снимаемая мощность оказывается в пределах нескольких милливатт. Но вернемся к «метелке», извлекающей слабый ток из атмосферы.

4. Характеристики тихого и коронного разрядов.

Нас будет интересовать, прежде всего, вольтамперная характеристика, т. е. зависимость тока разряда I от напряжения на остриях U, т. е. разности потенциалов между острием и окружающим воздухом. Если напряжение увеличивать, то очень слабый ток «метелки» растет (рис. 3). Он обусловлен оседанием ионов, всегда в небольшом количестве имеющихся в воздухе (несамостоятельный тихий разряд). По достижении «напряжения зажигания» (крутой излом на характеристике) разряд переходит в самостоятельный, а излучаемые остриями электроны приобретают энергию, достаточную для ионизации молекул воздуха. Острие оказывается окруженным облачком ионов, и разность потенциалов между ним и окружающим воздухом не растет с увеличением тока, а падает! Мы переходим в область отрицательного сопротивления на вольтамперной характеристике. При дальнейшем увеличении поля ионы быстрее разлетаются от острия, увеличиваются и ток, и разность потенциалов. Начинается область коронного разряда, сопровождающегося свечением на кончиках игл.

Стабилизировать электрический режим острия в области отрицательного сопротивления можно только одним способом — питая его от генератора тока, имеющего очень большое внутреннее сопротивление. Но ведь именно таким генератором и оказывается атмосфера, питающая электричеством нашу метелочную антенну! Проводимость воздуха мала, а его «внутреннее сопротивление», соответственно, велико. Следовательно, при удачном сочетании высоты «метелки», остроты ее игл и напряженности электростатического поля атмосферы ток с антенны вполне может оказаться оптимальным (Iopt на графике), и вывести антенну на режим отрицательного сопротивления.

5. Антенна, усиливающая сигнал!

Отрицательное сопротивление обладает уникальными свойствами — при росте тока напряжение на нем падает, мощность не рассеивается, а выделяется, подведенный сигнал не ослабляется, а усиливается! В радиотехнике отрицательные сопротивления проявляются у неоновых ламп, тиратронов, тиристоров, туннельных и лавинно-пролетных диодов. Последние два прибора широко используют для генерации и усиления ВЧ и СВЧ колебаний.

Теперь соберем все вместе, и посмотрим, что у нас получилось. Метелочная антенна, как обычный вертикальный провод с емкостной нагрузкой принимает радиосигнал. Хорошая практика — настраивать антенную цепь на частоту сигнала. Это делают с помощью катушки, образующей с емкостью антенны колебательный контур (рис. 4). ВЧ ток в цепи антенны возрастает при резонансе в Q раз, где Q — добротность антенной цепи. Добротность равна отношению реактивного сопротивления катушки (которое при резонансе в точности равно реактивному сопротивлению емкости антенны) к суммарному сопротивлению потерь в антенной цепи. Но кроме обычного положительного сопротивления потерь в антенную цепь у нас теперь входит и отрицательное сопротивление разряда с игл метелки! Суммарное сопротивление уменьшается, добротность цепи растет, ток ВЧ сигнала и его напряжение на катушке тоже увеличиваются. Получается, что антенна усиливает принимаемый сигнал за счет подпитки ее атмосферным электричеством.

Эффект усиления ВЧ сигнала антенной можно пояснить и по-другому, по аналогии с анодной цепью выходной лампы передатчика, работа которой описана во множестве книжек по радиотехнике. Когда анодный ток лампы растет, то напряжение на аноде падает, и наоборот. При этом лампа отдает мощность в нагрузку, потребляя ее от источника питания. Здесь картина аналогична (см. графики на рис. 4 справа). Предположим, что мы настроили антенну на частоту принимаемого сигнала, и на «метелке» появилось переменное напряжение U. Во время его положительной полуволны разность потенциалов между остриями и окружающим воздухом уменьшается, и ток I падает, а во время отрицательной полуволны — увеличивается, и ток растет. Все как в лампе, но источником «анодного питания» служит атмосфера.

Естественны вопросы: а какое усиление можно получить, и какую мощность можно снять с «метелки»? Ответа на первый вопрос я не знаю, поскольку спешу поделиться с радиолюбителями этой интересной гипотезой, и еще не проводил никаких экспериментов. По поводу мощности — полагаю, что она очень невелика, и ограничена мощностью атмосферного «источника питания». Наверное, десятки, от силы сотни микроватт. Поэтому нечего надеяться усилить, например, сигнал маломощного передатчика. Даже при приеме местных радиостанций мощность, снимаемая с антенны подобных размеров, может достигать единиц милливатт, и получить усиление проблематично. Иное дело при приеме слабых дальних станций. Здесь «усилительные свойства» метелочной антенны должны проявиться в полной мере. Нужны эксперименты!

В заключение выражаю благодарность С. Синдееву (UA3LMR) за подаренные журналы «Радиофронт» , и всем присутствовавшим на докладе за огромный интерес и внимание, с которыми он был выслушан.

Литература

Радиолюбители уже давно оценили те результаты, которые дает применение высокоэффективных антенных систем. О том, насколько интенсивно велись разработки в области радиолюбительской антенной техники, можно судить по тому многообразию антенных систем, которое было предложено коротковолновиками. В этой книге сделана попытка объединить некоторые вопросы теории и практики коротковолновых и ультракоротковолновых антенн в едином изложении, в первую очередь с учетом интересов радиолюбителей. Эта книга может служить в качестве справочного руководства для начинающих радиолюбителей, а также быть полезной и для опытных радиолюбителей при построении сложных антенн. Кроме того, в главе «Ультракоротковолновые антенны» приводятся многочисленные сведения по антеннам ультракоротких волн, которые могут быть полезны ультра-коротковолновикам. Для большей простоты и ясности изложения в ряде мест теория излагается в упрощенном виде. Читать далее книгу Антенны >>>

Назначение антенны

Связь между радиопередатчиком и радиоприемником осуществляется при помощи электромагнитных волн. От радиопередатчика модулированные токи высокой частоты поступают в антенну, которая преобразует их энергию в энергию электромагнитных волн. В задачу передающей антенны входит также сосредоточение излучения радиоволн преимущественно в одном направлении или в одной плоскости. Антенна радиоприемника выполняет обратные функции. Она преобразует энергию электромагнитных волн в энергию токов высокой частоты и обеспечивает выделение радиоволн, приходящих с заданных направлений. Передающая и приемная антенны обратимы, что позволяет по данным антенны при работе на передачу определять ее свойства в режиме приема и наоборот. Практически этим свойством антенны широко пользуются, тем более, что некоторые характеристики антенн удобнее и нагляднее определять в режиме передачи; чем в режиме приема. Читать далее книгу УКВ Антенны К. Харченко 1969 год

Измерение параметров антенно-фидерных устройств

Развитие антенной техники за последние годы характеризуется, во-первых, разработкой и внедрением в практику большого числа новых типов антенн, во-вторых, внесением разнообразных усовершенствований в конструкции и схемы ранее применявшихся типов антенн. Новые разработки часто проводятся теоретически. При этом почти всегда математический анализ делается для идеализированных условий, а расчёты проводятся по приближённым формулам, в связи, с чем результаты теоретического решения нуждаются в экспериментальной проверке, в основе которой лежит измерение параметров антенн. Многие же задачи антенной техники, по которым теория недостаточно развита, решаются целиком экспериментально. Таким образом, эксперимент играет важнейшую роль при разработке новых антенн и служит как средством проверки выводов теории, так и самостоятельным методом исследования.Измерение параметров антенн необходимо ещё по следующим причинам.

1) Антенны всех диапазонов от сверхдлинных до миллиметровых волн, находящиеся в эксплуатации на радиостанциях различного назначения, с течением времени подвергаются деформациям, которые приводят к изменению их параметров. Поэтому правилами эксплуатации предусматривается проведение периодических контрольных измерений параметров антенн, их регулировка и настройка соответственно результатам измерений.

2) На заводах при массовом выпуске антенн требуется измерение их параметров.

3) Применение методов автоматического управления аппаратурой радиостанций требует, в частности, установки приборов постоянного контроля и регулировки параметров антенн.

Читать далее книгу Фрадин А.З. Рыжков Е.В. Измерение параметров антенно-фидерных устройств. 1962

Антенны

Моё первое знакомство с антенной, которое хорошо мне запомнилось. Было мне тогда 11 или 12 лет жили в деревне, и у нас появился телевизор, на всю деревню второй по счету. У первого владельца был Рекорд 102 и антенна 3 квадрата, которая стояла на мачте 32 метра высотой. До телецентра 160 километров, а ретранслятора ближнего 60 километров. По этой причине и не было телевизоров. А тут прошел слух, что будут строить ретранслятор совсем рядом. Вот и купили мы Беларусь 110. Такой комбайн, где и радио и пластинки кроме телевизора. Вот и начал изучать я радио. Какие только проволочки не подключал, а на экране одна рябь. Прошло несколько дней моих попыток из ряби уловить, что то или услышать и, привезли из соседней деревни антенну. Смотрел и не мог понять восьмерка из проволоки в несколько рядов, а рядом ещё и сетка тоже из проволоки и все это казалось большим. Мачту сделали из сосны высотой 16 метров. Когда стали всё это поднимать собралось, наверное, пол деревни во главе с первым владельцем телевизора. И он приговаривал что бесполезно у меня 32 метра и 3 квадрата а тут всего 16 и какая не понятно антенна- не будет показывать. Поднимали мачту с антенной трактором. И мне это так запомнилось, как будто было вчера. Мачта поднята, закреплена, а я что, уже кручу телевизор, но пока одна рябь. Многие зашли в дом в том числе Силиверствович хозяин первого телевизора в деревне а тут рябь он опять за свое что говорил не будет показывать. Подошел мастер, который делал антенну, переключил на нужный канал и все замерли, на экране появилось изображение. Покрутили антенну и звук появился. Ещё пощелкал мастер телевизор и на другом канале можно смотреть. Это были 5 канал за 60 км. и 3 канал за 160км. Тут Силиверствович, как бы проснулся, начал размеры выпытывать у мастера и что это лучше чем мои 3 квадрата стал говорить. Как потом понял я, это была антенна зигзаг с рефлектором Харченко.

Если перенестись в мир современный — в новое столетие, то, что значит для радиолюбителя антенна. Многие знают, некоторые сильно на эту тему и не думали. Все мы люди и все мы разные. Даже есть мастера (в коллективе) которые директор от рефлектора отличить не смогут. А есть и такие (с 2 классами ЦПШ) которые без всяких формул и приборов смогут быстренько антенну сляпать, и будет она милая работать. Про себя тут пора вставить – у меня так получалось. Практика без теории плохо, а теория без практики еще хуже. Сейчас у меня накопилось огромное количество литературы — гигабайты, в том числе по антеннам. Попробую кое-что сюда выложить, так сказать от доброй души. Есть правда сомнения. Не хотелось бы. Хотел лучше, а получилось как всегда. Фу фу. Может кого конкретно, какая-то литература интересует, тогда пишите, адрес найдете.

Антенны с электрическим сканированием

Эта книга посвящена теоретическому обобщению и исследованию вопросов формирования диаграммы направленности и изменения направления излучения системы излучателей, образующих антенну с электронным сканированием. В частности, такая система излучателей рассматривается как фазированная антенная решётка (ФАР). В наиболее общей форме представлены свойства таких систем излучателей и даются рекомендации по построению систем, удовлетворяющих заданным требованиям. Книга рассчитана на научных и инженерно-технических работников, занятых исследованием и разработкой антенных устройств современных радиотехнических систем. Книга может быть полезна аспирантам и студентам старших курсов соответствующих специальностей.

Расчет вертикальной четвертьволновой антенны

КВ антенны

Ю. Прозоровский
РАДИО N 10 1962, c.23-24
Одним из основных способов снижения помех телевизионному приему со стороны любительских передатчиков является применение передающих антенн с вертикальной поляризацией. Наиболее распространена среди коротковолновиков четвертьволновая вертикальная антенна («Ground plane»). Эта антенна состоит из вертикального штыря, длина которого обычно несколько меньше четверти длины рабочей волны, излучаемой передатчиком, и противовеса. Он выполняется из нескольких горизонтально расположенных четвертьволновых лучей, соединенных с оболочкой коаксиального кабеля, по которому от передатчика подается высокочастотная энергия.
Сопротивление излучения такой четвертьволновой антенны равно 28-32 ом (в зависимости от внешнего диаметра металлических трубок, из которых она построена). Поэтому соединение антенны с 50- или 75-омным коаксиальным кабелем приведет к появлению в нем стоячих волн и к потере энергии. Для согласования вертикального штыря с кабелем необходимо использовать дополнительные элементы — катушки индуктивности, конденсаторы или отрезки кабеля с определенными параметрами.
Ниже описывается упрощенный метод расчета антенны «Ground plane» с горизонтальным противовесом и согласующим отрезком кабеля. Антенны, построенные по этому расчету, хорошо работают на одном любительском диапазоне (например, 14 Мгц) и, вместе с тем, вполне удовлетворительно излучают и на двух соседних диапазонах (21 и 7 Мгц).
Расчет будем приводить на числовом примере для диапазона 14 Мгц. Соединение штыря с питающим его кабелем и согласующим отрезком кабеля и обозначения их размеров показаны на рис. 1.


Puc.1

Для расчета необходимо знать диаметр металлических трубок или провода, из которых будут выполнены штырь антенны и лучи противовеса. Допустим, что мы собираемся применить для изготовления антенны трубки с внешним диаметром 30 мм,
а противовес будем делать из провода диаметром 2 мм. Определяем коэффициент М, характеризующий отношение длины удаленного от земли полуволнового диполя к диаметру антенны. Применяем формулу:
M=150000/(f(Мгц)D(мм))
Здесь: f — средняя частота диапазона,
D — диаметр трубок. При f=14,2 Мгц и D=30 мм получаем:
M=150000/(14,2*30)=352
По коэффициенту М определяем, пользуясь графиком (рис. 2), сопротивление излучения четвертьволновой антенны Rизл (для резонансной частоты): Rизл=30,8 ом.


Puc.2

Теперь следует вычислить истинное сопротивление излучения Ry укороченной антенны, которую мы будем строить; оно из-за влияния земли и противовеса отличается от Rизл и равно:
Ry=Rизл-Z/4Rизл
Здесь Z — волновое сопротивление коаксиального кабеля, из которого выполнен фидер. В нашем примере возьмем его равным 75 ом. Тогда:
Ry=30,8-75/4*30,8=30,2 Ом.
Для вычисления длины вертикального штыря L нужно по графику рис. 3 определить еще два вспомогательных коэффициента: Кс, характеризующий изменение сопротивления антенны при изменении ее длины, и Кз, учитывающий влияние противовеса и земной поверхности. Получаем: Kc=535, Kз=0,97.


Puc.3

График для определения коэффициента К может быть использован лишь при изменении длины антенны не более чем на 10%. Если антенна длиннее резонансной, то ее полное сопротивление носит индуктивный характер, если короче — емкостный.
Длина штыря (в мм) определяется по формуле:

У нас;

Для определения длины лучей противовеса Lnp, выполненных из провода диаметром 2 мм, вычисляем М:
M=150000/14,2*2=5280 и по графику рис. 3 находим Ky=0,978. Тогда

Укороченная антенна имеет, кроме активного, также реактивное сопротивление емкостного характера. Для его компенсации параллельно антенне присоединен закороченный на конце отрезок кабеля; длина его выбирается такой, чтобы его реактивное сопротивление имело индуктивный характер необходимой величины. Определяем это индуктивное сопротивление:
Xc=Z/S=75/1,22=61,5 Ом
Пользуясь логарифмической линейкой или таблицей тангенсов, находим угол а, тангенс которого численно равен отношению полученного значения Xc к волновому сопротивлению Zc кабеля, из которого будет выполнен согласующий отрезок. При Zc=75 ом:
Xc/Z=61,5/75=0,82 и a=39,4°
Длина закороченного отрезка равна:
Lc=(833ab)/f, мм
В этой формуле b — коэффициент, характеризующий скорость распространения энергии по кабелю. Для распространенных кабелей со сплошным заполнением (РК-1, РК-3) b=0,67.
Следовательно,
Lc=(833*38,4*0,67)/114,2=154,9 мм
Описанный выше расчет учитывает, что лучи противовеса расположены горизонтально; однако и при наклонном их расположении (под углом 30-40° к земле) рассогласование бывает незначительным.
Коэффициент стоячей волны (КСВ) в фидере можно измерить, собрав несложный указатель КСВ мостового типа, схема которого показана на рис. 4. Здесь сопротивления R1, R2, R3 и сопротивление излучения антенны образуют мост. В одну из его диагоналей подается энергия высокой частоты от передатчика (разъем Пер). Во второй диагонали включен диод Д1 типа Д2Е.


Рис.4

Сопротивление R4 служит для уменьшения выходного сопротивления источника энергии (передатчика). Дроссель (Др1) замыкает цепь постоянной слагающей выпрямленного тока; он необходим в том случае, если цепь антенны не имеет гальванической проводимости.
При балансе моста стрелка прибора не отклоняется. Рассогласование антенны и кабеля вызывает появление стоячих воли, что отмечается отклонением стрелки. Порядок измерения КСВ следующий:
1. Настраивают передатчик с антенной при полной излучаемой мощности.
2. Уменьшают мощность до нуля, запирая, например, одну из ламп предварительных каскадов отрицательным смещением, и отсоединяют антенну.
3. Соединяют отрезком кабеля вход передатчика и разъем Пер. на указателе ксв.
4. Постепенно, очень плавно, чтобы не сжечь сопротивление R4, увеличивают мощность энергии, подаваемой в указатель ксв, до тех пор, пока стрелка прибора не отклонится до конца шкалы.
5. Для проверки баланса моста временно присоединяют к разъему Ант сопротивление 75 ом; стрелка миллиамперметра должна при этом стать на нуль.
6. Включив к разъему Ант. коаксиальный кабель, питающий антенну, отмечают по шкале ток и определяют ксв по кривой, изображенной на рис. 5.


Puc.5

Если фидер антенны не вносит существенных потерь, например он выполнен из кабеля РК-1 или РК-3 и имеет длину не более 15-20 м, то ксв 2 и даже 2,5 вполне допустим. Общие потери (сумма потерь в фидере и потерь за счет рассогласования) в этом случае не превысят 0,5 дб. Такое уменьшение мощности на приемной станции на слух отмечено не будет. Заметное падение громкости приема (на 1-2 балла) может наблюдаться лишь при ксв порядка 5-8.
В том случае, если построенная антенна обладает чрезмерным ксв или ее размеры выбраны большими или меньшими, чем следует, необходимо, пользуясь указателем ксв, настроить антенну опытным путем. Антенна большей, чем нужно, длины может быть электрически укорочена конденсатором, включенным последовательно с вертикальной частью (рис. 6,а). Слишком короткую антенну можно электрически удлинить, добавив к ней индуктивность (рис. 6,б). В этом случае настройку антенны ведут попеременно, подбирая положение обоих щипков на катушке. Здесь часть катушки между щипками 1 и 2 используется для удлинения вертикальной части антенны, а нижняя часть (2-3) заменяет согласующий закороченный отрезок кабеля (рис. 1).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *