Вентиль

Вентиля и задвижки – два основных элемента, чаще всего используемых на промышленных трубопроводах. Без них сложно себе представить любую систему снабжения более-менее крупных размеров.

Задача такого оборудования проста – дать человеку возможность контроля над движением и состоянием транспортируемой жидкости внутри труб.

Многие люди несознательно путают вентиля и задвижки. Одни говорят, что между ними нет разницы, другие же наоборот, приписывают каждому инструменту несуществующие свойства.

Чугунный вентиль на трубопровод

Правда, как всегда, находится посередине. Вентиля и задвижки действительно отличаются друг от друга, но есть у них и сходства. В данной статье будет описано их подробное сравнение.

Особенности и назначение

Вентиль или задвижка – это запорные элементы трубопроводной системы. По стандарту называются запорной арматурой.

С запорной арматурой вы наверняка уже сталкивались. К примеру, на любой бытовой системе водоснабжения наверняка стоят краны, позволяющие ограничить поток жидкости в том или ином направлении. Полное перекрытие крана в считаные секунды блокирует движение носителя, отрезая конкретный участок ветки.

В итоге одним движением руки вы получаете возможность изолировать часть трубопровода, а затем выполнять над ней какие-то операции.

В бытовых условиях чаще всего используют клапана. Вентили и задвижки – это тоже запорная арматура, только более крупного образца.

Стандартный клапан размещают на трубы диаметром до 100 мм. Описываемые в данной статье детали слишком крупные и мощные. Их допустимо монтировать на трубы, диаметр которых только начинается от 100 мм (хотя есть и исключения).

Преимущественно подразумевается монтаж на магистральные ветки систем водоснабжения, отопления, газопроводы, маслопроводы, нефтепроводы и т.д.

Что интересно, конструкция вентиля или задвижки спроектирована так, чтобы каждый элемент смог выдержать огромное давление в условиях постоянного движения носителя. Из-за этого конструкция получается дороже, но куда эффективнее обычной клапанной арматуры.

Тип подсоединения

Мы уже отметили что, вентиль, как и задвижка, обладают схожей структурой и применяются для схожих задач. Чтобы сравнить их друг с другом, а также иметь в голове полноценную картину, чем же вентиль отличается от задвижки, нужно разобрать принцип действия каждого образца. Понять, как он работает, и из чего состоит.

Но перед этим обратим внимание на способы их подсоединения к трубопроводу. Они у них общие.

Элементы такого типа могут быть:

  • фланцевыми;
  • сварными;
  • муфтовыми.

Имеется в виду тип подсоединения к трубопроводу. Здесь различий практически нет. Что вентиль, что задвижка выполнены во всех вариациях.

Обычная бытовая запорная арматура

Фланцевый тип подсоединения подразумевает монтаж на фланцы. Своего рода соединительные кольца, наваренные на края, как запорной арматуры, так и трубопровода. Это хороший вариант, когда нужна надежность в комбинации с практичностью.

Фланцы наваривают на выходы, затем уплотняют резиновыми кольцами. Соединение происходит за счет стягивания болтами ответных фланцев на трубе и задвижке. Количество болтов, их размер, диаметр фланца и множество других параметров зависит от условий в каждом конкретном случае.

Фланцы удобнее всего применять в промышленности, но и в бытовых условиях, а также в гражданском строительстве от них есть толк.

Про сварные соединения, думается, вы уже и так знаете достаточно. Сварная запорная арматура не пользуется такой же популярностью, как фланцевая или муфтовая, но она тоже довольно широко представлена на рынке, а значит, не упомянуть ее было бы решением ошибочным.

Сварные фитинги монтируют на трубопроводы с помощью приваривания газовой или электрической сваркой. Плюсы подобных соединений в их прочности. Минусы – в отсутствии возможности снять запорную арматуру. А такая необходимость может появиться в любой момент.

Запорная арматура не вечна. В ней постоянно происходят динамические процессы. Изнашиваются уплотнители, расшатывается клин, стачиваются детали. Рано или поздно задвижка выйдет из строя. И вот что делать тогда, вопрос открытый.

Муфтовые образцы монтируют преимущественно на резьбовые соединения. Это промежуточный вариант между сваркой и фланцами. С ним нужно больше возиться, зато можно обойтись вообще без сварочного аппарата. Задействуются в большей степени на средних размеров гражданских системах.

Конструкция и принцип работы вентиля

Вентиль – запорная арматура регулирующего типа. Вы должны были видеть вентили если не вживую, то по телевизору.

Это крупный элемент трубопровода, немного утолщенный и с большим регулирующим кольцом, которое собственно вентилем и называют. Задача вентиля заключается в перекрытии и регулировании потока жидкости внутри трубы.

Задвижки разных диаметров

Этим он отличается от задвижки. Дело в том, что фиксируемая деталь может находиться сразу в нескольких положениях.

Если закрутить его на несколько оборотов, то поток блокируется только частично. Запорный элемент искусственно уменьшит диаметр проходного отверстия внутри, что скажется на количестве доставляемой жидкости.

Полное закрытие вентиля блокирует всю систему, точно так же, как это делает задвижка. Эта возможность выбирать положение для запорного элемента внутри вентиля – и есть основное его преимущество.

Очень часто в промышленных трубопроводах постает необходимость не просто полностью перекрыть поток жидкости, а только умерить его до определенных значений. Сделать это проще всего именно через монтаж вентилей в потенциально подходящих местах. Более удобного и простого способа человечество еще не придумало.

Разбор внутренностей

Состоит вентиль из нескольких основных деталей. Базу для всех его внутренностей содержит в себе мощный корпус.

Корпус преимущественно литой, а не разборный. Но бывают разные модели, каждая конкретная схема претерпевает некоторые изменения, в соответствии с ожиданиями и желаниями производителя.

Внутри корпуса есть отверстие для прохода жидкости. Отверстие это может быть как полноразмерным, так и уменьшенным.

Полноразмерный проход дает возможность транспортировать жидкость в полной мере, а также снижает нагрузку на внутренности вентиля. Жидкость течет без проблем, не встречая сопротивления.

Другое дело – миниатюрные вентили. Они в своем базовом состоянии не способны пропускать номинальное количество носителя за один и тот же промежуток времени.

Схематический рисунок конструкции задвижек

В центральной части корпуса находится клапанный блокиратор или просто клапан со шпинделем. К нему подсоединена резьба с направляющими, а резьбой управляют за счет вращения ручки вентиля.

Система проста и неприхотлива, от того и столь эффективна. Вращая ручку, мы передаем усилие на винтовую резьбу. Та влияет на положение клапана внутри вентиля. Закручивание ручки опускает клапан, откручивание наоборот, поднимает. Соответственно вы можете регулировать движение носителя в трубе так, как сами того пожелаете.

Важная особенность состоит в том, что в вентиле течение жидкости блокируется за счет параллельного перекрытия потока. Это сказывается на стоимости всей конструкции, а также его цене его разновидностей. Именно поэтому полнопроходный образец вентиля гораздо дороже стандартного суженного.

Конструкция и действие задвижки

Отличие задвижки от вентиля состоит в нескольких небольших, но все же крайне важных конструктивных особенностях. Разобравшись с ними, вы точно поймете, что здесь и как работает.

Задвижка выполняет те же задачи, что и вентиль. Она тоже способна заблокировать или открыть систему в любой момент.

Только вот задвижка существует в двух положениях:

  • открытом;
  • закрытом.

Третьего варианта не дано. Сама ее конструкция просто не позволяет эффективно перекрывать поток частичным образом. Запорный элемент внутри спроектирован по такой схеме не просто так.

В задвижке запорный элемент или клин находится в перпендикулярном к носителю положении. Закрывается он точно так же, перемещаясь всего на несколько десятков сантиметров вниз.

Это упрощает конструкцию, делает ее более неприхотливой и дешевой. Но также и повышает давление на все составляющие детали. Особенно, если речь идет о запорной арматуре, монтируемой на трубопроводах высокого давления.

Монтаж огромной промышленной задвижки (видео)

Схема сборки

Во многом задвижка повторяет конструкцию вентиля. Она тоже состоит из цельного литого корпуса. Она тоже может быть как полнопроходной, так и стандартной, с суженным диаметром.

Основные различия касаются самого запорного элемента. В задвижках поток блокируют клином. Закрытое положение клина прячет его в верхней седельной части. Клин никак не препятствует движению жидкости в системе.

К его направляющим подсоединена резьба, а ту контролируют вращением ручки. В общем, система та же, что и с вентилем. Различие кроется в деталях.

При вращении ручки клин просто освобождается, в один момент перекрывая всю трубу. Нижняя часть клина заходит во внутренние седла, уплотненные резиной.

Основные отличия

Перечислим все отличия вентилей и задвижек. Так вам будет проще ориентироваться и делать свой выбор.

Список отличий:

  1. Вентилем можно регулировать поток в системе, задвижка же находится в двух состояниях: открытом и закрытом.
  2. В вентиле идет параллельное блокирование системы, задвижка блокируется перпендикулярно потоку.
  3. Задвижка быстрее изнашивается.
  4. Вентиль стоит дороже, особенно его полнопроходный вариант.

Чем отличается вентиль от крана

Независимо от назначения и размещения трубных систем, их безопасное эксплуатирование невозможно без установленной арматуры. С ее помощью выполняется настройка интенсивности, силы и направленности движения внутритрубных веществ. Существуют некоторые различия между запирающими органами, выражающиеся в возможности решения тех или иных задач. Определение отличий вентиля от крана выступает показательным примером, который демонстрирует разность трубопроводной арматуры.

1. Конструктивные различия между краном и вентилем
1.1. Главные узлы шарового крана
1.2. Основные узлы вентиля
2. Разновидности вентилей и кранов
2.1. Разновидности шаровых кранов
2.2. Разновидности вентилей
3. Чем отличается вентиль от шарового крана по типу монтажа
4. Чем отличается вентиль от крана
5. Что лучше: шаровый кран или вентиль

Конструктивные различия между краном и вентилем

Кран и вентиль — это детали, чаще всего инсталлируемые на системах труб. Столь существенная востребованность обусловлена их надёжностью и простотой применения. Однако по своему назначению детали имеют существенные отличия, которые обусловлены внутренней конструкцией каждого.

Главные узлы шарового крана

К основным конструктивным элементам шарового крана относятся:

  1. Корпус.
  2. Поворотная ручка или редуктор.
  3. Уплотняющие кольца штока.
  4. Шток.
  5. Сфера со сквозным отверстием, через которое протекает трубный субстрат.
  6. Седла, в которые помещается главный запорный элемент.

Основные узлы вентиля

Отличие крана от вентиля видно невооруженным глазом, ведь разница внутреннего строения оказывает непосредственное влияние на внешний вид приборов. Вместо шарообразного запирающего механизма здесь применяется клапан (1), который прижимается штоком (2), ввинчиваемым вовнутрь корпуса (3). Вращение обеспечивается с помощью маховика (4). Для предотвращения проникновения субстратов из трубы применяются разнообразные уплотнения (6) штока и прокладки (7) между крышкой (8) и корпусом изделия.

Разновидности вентилей и кранов

Столь существенные конструктивные отличия вентиля от шарового крана обуславливают принцип их работы. Первый тип применим не только для открытия/закрытия потока движущихся внутри трубы веществ, но и его регулировки. Второй тип используется для подачи или перекрытия субстратов в трубопроводе.

Разновидности шаровых кранов

Основная разница между вентилем и краном в том, что последние представлены моделями изделий, способных не только прекращать, но и изменять направление движения веществ:

  • двухходовые — используются для перекрытия или открытия движения веществ, перемещаемых в одну из сторон трубопровода;
  • трёхходовые L-образные — отличаются способностями изменять направление протекания субстратов и полной остановкой их передвижение в трубе;
  • T-образные — применяются для разъединения потока, объединения или изменения его направленности.

Необходимо отметить, что краны предназначаются в том числе для открытия или закрытия потока. Если на определенном участке трубы потребуется уменьшить силу потока, выполняется подбор устройства с соответствующим сечением отверстия в сфере:

  • полнопроходные — запирающий механизм не оказывает влияние на протекающие сквозь него субстраты, что обеспечивается за счет соответствия диаметра, внутри отверстия, имеющейся трубе;
  • стандартнопроходные — просвет запорного шара имеет 20–30% заужение по сравнению с сечением подключенного трубопровода;
  • неполнопроходные — значение заужения обеспечивает уменьшение напора на 30–60% от первоначального значения.

В зависимости от материала изготовления шарового крана, отличаются его технические характеристики.

  1. Латунные. Применимы только для функционирования в системах с нейтральными веществами, значение температуры которых не превышает 150°C, а давления 40 бар. Номинальное сечение кранов находится в диапазоне от 8 до 100 мм. Отличаются способностью эффективно выдерживать перепады температуры, невосприимчивы к коррозии.
  2. Стальные. Подвержены коррозии, быстро разрушаются при взаимодействии с агрессивными соединениями, потому монтируются на трубах, основная среда — вода или другие неагрессивные соединения. Предельная сила потока, которую способны выдержать стальные краны, достигает 160 бар, а температура 200°C. Отличаются выпуском изделий в широком диапазоне номинальных сечений от 15 до 600 мм.
  3. Нержавеющие. Отличаются устойчивостью к агрессивным веществам и отсутствием коррозионного разрушения. Способны выдержать напор до 60 бар при условии, что температура веществ в трубе будет не выше 210°C.
  4. Чугунные. Запорная арматура, используемая только в трубопроводных системах горячего или холодного водоснабжения.

Чтобы понять, чем отличается кран от вентиля, следует разобраться с различиями в материалах, из которых изготавливается корпус. Для вентилей характерны такие типы металлов:

  • чугун — номинальное сечение изделий из этого материала имеет диапазон 15–300 мм, а предельное давление, которое он способен выдержать — 16 бар;
  • сталь — здесь диаметр прохода вентиля колеблется от 3 до 200 мм, а максимальная сила потока и температура среды составляют 220 бар и 450°C соответственно;
  • нержавейка — используются на трубопроводах, сечение которых 3–200 мм, при этом давление вещества не более 220 бар, а его температура 570°C.

Кроме материала, вентили отличаются по форме исполнения:

  • проходные — инсталлируются только на ровных участках трубы и обеспечивают плавное регулирование или перекрытие потока движущихся в трубе веществ;
  • прямоточные — отличаются минимальным значением сопротивления перемещаемому потоку и монтируются практически в любой плоскости;
  • угловые — обладают специфической формой, которая позволяет осуществлять их инсталляцию на угловые трубопроводы.

Чем отличается вентиль от шарового крана по типу монтажа

Оба типа арматуры имеют резьбовой и фланцевый тип присоединения к трубопроводу. Однако в каждом есть отличия по диапазону номинальных диаметров. Для муфтового соединения он выглядит следующим образом:

  • вентиля — Ду от 15 до 300 мм;
  • краны — Ду от 8 до 100 мм.

При этом для шаровых кранов характеры и другие типы монтажа:

  • межфланцевые — Ду от 15 до 200 мм;
  • под приварку — Ду от 10 до 600 мм;
  • комбинированные — Ду 15 до 200 мм.

Существенное отличие между этими двумя типами трубной арматуры заключается в том, что вентиль конструктивно предназначен для регулировки потока движущегося вещества. Кран способен работать только в режиме «открыто/закрыто», промежуточных вариантов положения запирающего органа в нем не предусмотрено. Его использование для регулирования движения приведет к скорому износу.

Вентильный кран имеет запирающий орган в форме диска, как у вентиля, и также предназначен для регулировки потока.

Что лучше: шаровый кран или вентиль

Выбор конкретного типа арматуры во многом зависит от условий эксплуатации. Если в месте монтажа нет необходимости регулировать интенсивность перемещения вещества внутри трубы, тогда следует останавливать свой выбор на шаровом кране. Он отличается герметичностью, простотой конструкции и использования.

Вентиль (или вентильный кран) подойдет в тех ситуациях, когда необходимо осуществлять настройку силы движения веществ в трубе. Плавные вращения маховиком позволят с достаточной точностью установить тот напор, который требуется на конкретный промежуток времени.

Что лучше: вентиль или шаровый кран? Конкретного ответа нет. Каждый из этих разновидностей трубной арматуры достойно справляется с поставленными задачами.

Также читайте Чем отличается задвижка от крана шарового

Как определить, закрыт или открыт вентиль

При выполнении ремонтных работ неопытные мастера часто сталкиваются с проблемой определения положения вентиля. Особенно остро встает этот вопрос, если на устройстве отсутствует управляющий механизм. Как отличить открытый вентиль от закрытого в различных ситуациях, читайте далее.

Арматура для бытового трубопровода

Разновидности вентилей

Чтобы определить положение устройства, и узнать, как открывается или закрывается вентиль, в первую очередь требуется узнать вид установленного устройства.

В бытовых системах чаще всего устанавливаются:

  • шаровые вентили. В корпусе устройства располагается металлический шар, который является запорным механизмом. Корпус и запорный элемент, как правило, изготавливаются из прочных металлов (латуни, стали, бронзы), что обеспечивает длительный период использования устройства;

Вентиль с запорным механизмом в виде шара

  • пробковые вентили. Запорными элементами в данном типе устройств являются пробки цилиндрической или конусной формы. Корпус пробкового вентиля также изготавливается из высокопрочного металла. Устройство запорного механизма позволяет использовать вентиль в трубопроводах с агрессивными средами.

Вентиль с цилиндрической пробкой

В большинстве случаев шаровые вентили устанавливаются на системы отопления и водоснабжения, а пробковые вентили на газопровод.

Открытие и закрытие вентилей

Определить, открыт или закрыт вентиль, можно по нескольким признакам в зависимости от вида установленного устройства.

Определение положения шарового вентиля

Для определения состояния шарового вентиля можно использовать:

  1. управляющую ручку;
  2. выточку, расположенную на штоке.

Шаровой вентиль может быть оснащен двумя типами ручек:

  • рукоять, представляющую собой продолговатый элемент, прикрепленный к корпусу устройства;
  • ручку-бабочку, состоящую из двух аналогичных частей, расположенных симметрично относительно точки крепления.

Вентиль закрывается, если ручка поворачивается перпендикулярно устройству и направлению трубопровода, и открывается, если ручка поворачивается в направлении оси устройства и соответственно трубопровода.

Определение состояния вентиля по ручке, установленной на устройстве

Определить состояние вентиля по ручке поможет следующий видеоролик.

Если ручки сломаны или по каким-либо причинам полностью отсутствуют, то можно ли узнать положение вентиля? Для определения состояния устройства при рассматриваемых обстоятельствах можно воспользоваться выточкой, расположенной на штоке.

Элемент, по которому можно определить положение вентиля

Если выточка расположена параллельно трубопроводу, то вентиль открыт и пропускает жидкость (газ). Если выточка располагается перпендикулярно направлению труб, то вентиль закрыт и движение жидкости по системе невозможно.

Определение положения вентиля по выточке

Для удобства использования шарового крана на корпусе устройства располагаются специальные выступы, которые предназначены для ограничения поворота ручки и, как следствие, продления периода использования устройства.

Определение положения пробкового вентиля

В какую сторону открутить пробковый вентиль, если на устройстве отсутствует ручка, и как узнать положение вентиля в таком случае?

Чтобы определить положение вентиля, не имеющего ручки, необходимо:

  1. найти на верхней части штока шлиц (риску);
  2. визуально узнать состояние устройства.

Определение состояния пробкового крана при отсутствии ручки

Чтобы закрыть вентиль любого типа, необходимо вращать управляющую ручку или крепежный шток в направлении движения часовой стрелки. Для открытия вентиля ручка вращается в обратном направлении, то есть против движения часовой стрелки.

Выбор и установка шарового вентиля

Вентиль шаровой устанавливается на водоснабжающих, газоснабжающих и отопительных трубопроводах. Устройство служит для полного или частичного перекрытия воды или газа в системе. Простота конструкции и надежность обуславливают широкое применение как на бытовых, так и на промышленных трубах. Как правильно подобрать вентиль и установить его, читайте далее.

Запорная арматура для трубопроводов различного назначения

Устройство шарового вентиля

Запорный элемент шарового вентиля (4) приводится в движение рукояткой (11), которая может быть выполнена в виде маховика или рычага. Рукоять крепится к корпусу крана гайкой (9) и контрящим кольцом (10).

В закрытом положении шар-затвор плотно располагается в корпусе устройства. Дополнительную герметизацию придает прокладка (5), размещенная по периметру шара. Для фиксации затвора в одном положении используются шток, прикрепленный к корпусу вентиля резьбовым способом (3) и ходовая гайка (8).

Все элементы, соединяемые между собой, надежно герметизированы тефлоновыми прокладками (6,7).

Составляющие элементы конструкции вентиля

Критерии выбора шарового вентиля

Вентили шаровые труб выбираются в зависимости от следующих параметров:

  • конструкции устройства;
  • пропускной способности;
  • материалу изготовления;
  • способу крепления;
  • фирмы производителя.

Виды вентилей в зависимости от конструкции

В зависимости от конструкции шаровой кран может быть:

  • прямоточным. Основная отличительная особенность – небольшое гидравлическое сопротивление. В большинстве случаев устанавливается для регулировки поступления жидкости в системы отопления;

Устройство для регулировки потока жидкости

  • проходным. Проходной вентиль для воды или газа устанавливается на ровный участок трубопровода и служит для полного перекрытия поступающего потока;

Устройство для пропуска жидкости в одном направлении

  • угловым. Угловой вентиль монтируется на сгиб трубопровода. Предназначение устройства – перекрытие входящего потока;

Устройство для установки на сгибе трубопровода

  • смесительным или трехходовыми. Устанавливается на системы при необходимости смешивания двух потоков поступающей жидкости.

Устройство для смешивания потоков

Выбирать конструкцию шарового вентиля необходимо в зависимости от выполняемой функции и особенностей трубопровода.

Выбор пропускной способности

В зависимости от пропускной способности шаровые вентили подразделяются на:

  • полнопроходные, способные пропускать 90% – 100% поступающей жидкости (газа);
  • стандартные, которые пропускают 70% – 80% жидкости;
  • неполнопроходные (40% – 50%). Устройства устанавливаются при необходимости сокращения поступающего потока.

Подбор материала

Вентили шаровые могут изготавливаться:

  • из латуни. Прочный материал, выдерживающий большое давление и температуру, а также практически не подверженный отложению коррозии. Кроме этого латунные вентили отличаются небольшим весом и эстетичностью;

Латунный шаровой вентиль

  • из бронзы. Материал также является прочным, но в отличие от латуни более дорогостоящим;

Бронзовый шаровой вентиль для трубопроводов

  • из пластика. Устройства монтируются исключительно на пластиковые трубопроводы. Для остальных видов систем не подходят;

Вентиль для трубопроводов и пластика

  • из нержавеющей стали. Отличные характеристики устройства обуславливают его применение в промышленных трубопроводах.

Устройство из нержавеющей стали

Для стандартных домовых систем более всего подходят латунные вентили, которые можно установить на трубопровод, изготовленный из любого материала.

Выбор способа крепления

По способу крепления шаровые вентиля подразделяются на следующие виды:

  • резьбовые (муфтовые). Муфтовый вентиль чаще всего применяется в частных трубопроводах небольшого диаметра (до 65 мм), причем как для газа, так и для воды или отопления. Резьбовой кран отличается простотой монтажа. Для установки устройства, при условии что на трубах предварительно нарезана резьба, не требуется специального инструмента и навыков специалиста;

Устройство, закрепляющееся резьбовым методом

  • фланцевые. Вентиль, устанавливаемый при помощи специальных элементов (фланцев), преимущественно используется для монтажа на промышленные трубопроводы, диаметром от 50 мм. Фланцевый вентиль является более герметичным и долговечным;

Устройство, закрепляющееся специальными элементами

  • приварные, устанавливаемые на металлические трубопроводы при помощи сварки. Крепление приварного вентиля является самым надежным, однако для монтажа устройства требуются определенные навыки. В большинстве случаев приварные вентили устанавливаются на промышленные газопроводы, где требуется высокая герметичность.

Устройство, для установки которого требуется сварка

Выбор производителя

Надежность и долговечность шарового вентиля в первую очередь зависит от компании-производителя. Специалисты рекомендует приобретать запорную арматуру, произведенную следующими компаниями:

  • Valtec – итальянско-российская компания, специализирующаяся на производстве инженерной сантехники для отопления и водоснабжения. Невысокая стоимость и отличное качество привлекают внимание потребителей;
  • Danfoss (Дания). Приварные вентили GBC отличаются высокой прочностью и могут быть использованы в различных системах, в том числе кондиционирования помещения;
  • Becool (Россия). Вентили серии BC – BV устойчивы к агрессивным средам, имеют высокий уровень герметичности и могут монтироваться на различные трубопроводы.

Монтаж вентиля своими руками

Если течет шаровый вентиль или устройство не удерживает поток воды (газа), то требуется его замена.

Установить новый вентиль можно следующим образом:

  1. перекрывается поток воды (газа) в трубопроводе;

Вентиля в положении «открыто» и «закрыто»

Если замена вентиля производится на разводке труб в жилом помещении, то требуется перекрыть общедомовой стояк. Если требуется заменить устройство на стояке, то для перекрытия потока необходимо обратиться в управляющую компанию.

  1. демонтируется старое устройство. При снятии вентиля рекомендуется придерживать трубу, чтобы она не сгибалась;

Снятие старого вентиля

  1. очищается резьба;
  2. производится герметизация мест соединения. Для уплотнения резьбы можно использовать ФУМ-ленту или льняную нить;

Уплотнение резьбы

  1. накручивается новый вентиль. При фиксации резьбы важно следить за количеством оборотов. При слабой затяжке соединение не будет герметичным, а при сильном затягивании можно повредить резьбу. Оптимальным считается 4 – 5 полных оборотов;
  2. проверяется герметичность и работоспособность вентиля.

Как установить кран при необходимости нарезки на трубах резьбы, смотрите на видео.

Зная простые правила выбора шарового крана и способ его установки на трубопровод, все работы можно сделать без помощи специалистов.

Оптический вентиль

Полезная модель направлена не повышение потребительской стоимости путем повышения лучевой стойкости. Указанный технический результат достигается размещением на оптической оси двух четвертьволновых пластин и дополнительных вращателей плоскости поляризации, помещенных в продольное магнитное поле, в результате чего распространяющиеся в прямом и обратном направлениях пучки света оказываются пространственно разнесенными что приводит к снижению температуры в пределах апертур этих пучков, В результате чего увеличивается лучевая стойкость. 1 н.п. ф-лы, 1 ил.

Полезная модель относится к оптической технике и может быть использована как элемент оптической развязки.

Известны различные варианты оптических вентилей, например, устройства против ослепления водителей светом фар встречных машин , содержащие поляроидные пленки, однако они имеют большие потери световой энергии, что ограничивает возможности их применения.

Акустооптический вентиль, описанный в , содержит последовательно расположенные на оптической оси интерферометр Фабри-Перо, настроенный на пропускание излучения с частотой, равной частоте излучения источника света, и акустооптический брэгговский модулятор. Оптическое излучение с частотой проходит через интерферометр Фабри-Перо и попадает в акустооптический брэгговский модулятор. На его выходе частота оптического излучения становится равной +f, где f — частота акустической волны. Излучение, отраженное от какого-либо элемента оптического тракта или от какого-либо объекта и распространяющееся в обратном направлении, после прохода через акустооптический брэгговский модулятор будет иметь частоту, равную +2f. Параметры интерферометра Фабри-Перо подобраны таким образом, что излучение с частотой +2f не пройдет через него (при частоте кривая зависимости пропускания интерферометра Фабри-Перо от частоты имеет максимум, а при частоте +2f имеет минимум). Недостаток акустооптического вентиля заключается в том, что он требует затрат энергии, расходуемой на возбуждение акустической волны в акустооптическом брэгговском модуляторе. Кроме того, частота оптического излучения на выходе акустооптического вентиля не равна частоте оптического излучения на его входе, что сужает область применения такого вентиля.

Известен также оптический вентиль, описанный в . Он содержит последовательно расположенные на оптической оси собирающую линзу с продольной хроматической аберрацией и поглощающую маску, причем поглощающая маска расположена в пределах области продольной хроматической аберрации собирающей линзы. Поглощающая маска может быть закреплена с помощью радиальных растяжек. Оптическое излучение, вошедшее в оптический вентиль в направлении слева направо (в обратном направлении) вследствие продольной хроматической аберрации собирающей линзы разделится на ряд спектральных составляющих. Из них поглотится только та спектральная составляющая, которая сфокусирована в точке расположения поглощающей маски. Все остальные спектральные составляющие пройдут через оптический вентиль в направлении слева направо. В прямом направлении (справа налево) оптическое излучение пройдет практически без ослабления, так как площадь поглощающей маски ничтожно мала по сравнению с площадью поперечного сечения оптического пучка. Недостаток известного оптического вентиля заключается в том, что оптическое излучение, проходящее через этот оптический вентиль как в прямом, так и в обратном направлении, преобразуется в вентиле из плоско-параллельного пучка в сходящийся пучок, который после прохождения через фокальную плоскость собирающей линзы превращается, естественно, в расходящийся пучок, что существенно сужает область применения описанного оптического вентиля.

Наиболее близким по технической сущности к заявленному устройству является описанный в оптический вентиль, содержащий последовательно расположенные на оптической оси первый поляризатор, магнитооптический ротатор (вращатель плоскости поляризации) и второй поляризатор. Вращатель плоскости поляризации помещен в продольное магнитное поле магнитной системы трубчатой формы с осевой намагниченностью. Оптическое излучение проходит через поляризатор и становится линейно поляризованным. Во вращателе плоскости поляризации вследствие магнитооптического эффекта Фарадея плоскость поляризации линейно поляризованного света поворачивается на угол 45° относительно исходной плоскости поляризации и проходит через второй анализатор, главная плоскость которого повернута на 45° относительно главной плоскости первого поляризатора. Излучение, распространяющееся в обратном направлении, после прохождения через анализатор и магнитооптический ротатор, будет иметь плоскость поляризации, повернутую на угол 90° относительно исходной плоскости поляризации и, следовательно, поглотится в первом поляризаторе.

Недостаток известного оптического вентиля заключается в низких потребительских свойствах, что обусловлено низкой лучевой стойкостью. При воздействии на вращатель плоскости поляризации оптического излучения большой мощности он нагревается, в результате чего снижается величина постоянной Верде (удельной вращательной способности) материала магнитооптического ротатора. При этом угол поворота плоскости поляризации во вращателе плоскости поляризации становится меньше 45°, что приводит к снижению пропускания оптического вентиля в прямом направлении и повышению пропускания оптического вентиля в обратном направлении.

Задачей полезной модели является повышение потребительских свойств путем повышения лучевой стойкости.

Решение поставленной задачи обеспечивается тем, что в известный оптический вентиль, содержащий первый поляризатор, вращатель плоскости поляризации, второй поляризатор, магнитную систему, первый поляризатор, вращатель плоскости поляризации, второй поляризатор расположены последовательно на оптической оси, вращатель плоскости поляризации помещен в продольное магнитное поле магнитной системы, торцы вращателя плоскости поляризации выполнены скошенными, внесены следующие усовершенствования: он дополнительно содержит первую четвертьволновую пластину, вторую четвертьволновую пластину, N дополнительных вращателей плоскости поляризации, N дополнительных магнитных систем, первая четвертьволновая пластина расположена на оптической оси между поляризатором и вращателем плоскости поляризации, дополнительные вращатели плоскости поляризации и вторая четвертьволновая пластина последовательно расположены на оптической оси между вращателем плоскости поляризации и вторым поляризатором, i-й дополнительный вращатель плоскости поляризации помещен в продольное магнитное поле i-й дополнительной магнитной системы, торцы i-го дополнительного вращателя плоскости поляризации выполены скошенными, где i, N — натуральные числа, причем 1iN.

Такое построение оптического вентиля позволяет повысить потребительские свойства путем повышения лучевой стойкости. Это обеспечивается разнесеннием в пространстве распространяющихся в прямом и обратном направлениях пучков оптического излучения, что в пределах апертур этих пучков снижается нагрев вращателя плоскости поляризации и дополнительных вращаталей плоскости поляризации, в результате чего повышается лучевая стойкость вращателя плоскости поляризации и N дополнительных вращателей плоскости поляризации, что приводит к повышению лучевой стойкости оптического вентиля.

Сущность полезной модели поясняется описанием примера конкретного выполнения заявленного устройства и прилагаемым чертежом, на котором приведена схема оптического вентиля.

Оптический вентиль содержит первый поляризатор 1, вращатель 2 плоскости поляризации, второй поляризатор 3, магнитную систему 4, первый поляризатор 1, вращатель 2 плоскости поляризации, второй поляризатор 3 расположены последовательно на оптической оси, вращатель 2 плоскости поляризации помещен в продольное магнитное поле магнитной системы 4, торцы вращателя 2 плоскости поляризации выполнены скошенными. Оптический вентиль также содержит первую четвертьволновую пластину 5, вторую четвертьволновую пластину 6, N дополнительных вращателей 7 плоскости поляризации, N дополнительных магнитных систем 8, первая четвертьволновая пластина 5 расположена на оптической оси между поляризатором 1 и вращателем 2 плоскости поляризации, дополнительные вращатели 7 плоскости поляризации и вторая четвертьволновая пластина 6 последовательно расположены на оптической оси между вращателем 2 плоскости поляризации и вторым поляризатором 3. i-й дополнительный вращатель 7 плоскости поляризации помещен в продольное магнитное поле i-й дополнительной магнитной системы 8, торцы i-го дополнительного вращателя 7 плоскости поляризации выполнены скошенными, где i, N — натуральные числа, причем 1iN. На фиг. позициями 9, 10 и 11 обозначены первое зеркало, второе зеркало и источник оптического излучения соответственно. Магнитная система 4 и дополнительные магнитные системы 8 могут быть выполнены трубчатой формы с осевой намагниченностью.

Оптический вентиль работает следующим образом. Оптическое излучение, генерируемое источником оптического излучения 11, отражается первым зеркалом 9 в требуемом направлении, далее, пройдя через первый поляризатор 1, становится линейно поляризованным. После прохождения через первую четвертьволновую пластину 5 линейно поляризованное оптическое излучение превращается в поляризованное по кругу, например, право-циркулярное (обыкновенный луч) и последовательно проходит через вращатель 2 плоскости поляризации и N дополнительных вращателей 7 плоскости поляризации и попадает во вторую четвертьволновую пластину 6, после прохождения которой оптическое излучение снова становится линейно поляризованным. Оптическое излучение, распространяющееся в обратном направлении, после прохождения через второй поляризатор 3 снова становится линейно поляризованным. После прохождения через вторую четвертьволновую пластину 6 обратное оптическое излучение превращается в левоциркулярное излучение (необыкновенный луч) и падает на скошенный торец N-ного дополнительного вращателя 7 плоскости поляризации.

При наличии магнитооптического эффекта Фарадея в материале вращателя 2 плоскости поляризации и дополнительных вращателей 7 плоскости поляризации в продольном магнитном поле показатель преломления обыкновенного луча n о не равен показателю преломления nе необыкновенного луча:

nо=nе(1-VH/(ne)),

где — длина волны оптического излучения, V — постоянная Верде (удельная вращательная способность материала вращателя 2 плоскости поляризации) и дополнительных вращателей 7 плоскости поляризации, Н — величина проекции напряженности магнитного поля на оптическую ось. Поэтому на скошенном торце N-го дополнительного вращателя 7 плоскости поляризации распространяющееся в обратном направлении оптическое излучение отклоняется от оптической оси (необыкновенный луч). На другом скошенном торце дополнительного вращателя 7 плоскости поляризации отклонение необычного луча, от оптической оси увеличивается. В(N-1)-м, , i-м, , 1-м дополнительных вращателях 7 плоскости поляризации и вращателе 2 плоскости поляризации процесс повторяется. После выхода распространяющего в обратном направлении оптического излучения из вращателя 2 плоскости поляризации оно последовательно проходит через первую четвертьволновую пластину 5 и первый поляризатор 1. Затем оно отражается вторым зеркалом 10 в сторону от оптического вентиля.

ИСТОЧНИКИ ИНФОРМАЦИИ

1 Галкин Ю.Н. Электрооборудование автомобилей. М.: 1947. С.12-14.

2 Патент Великобритании 2109122, публ. 25.03.83, МПК G02F 1/11, HKИ G2F.

3 Янов В.Г., Бессонов Е.И., Бессонов П.Е. Оптические вентили. МО РФ, СПб, 2004. С.106-108.

4 Авторское свидетельство СССР на изобретение 881650, публ. 15.11.81, МПК G02F 3/00.

6 Birh K.P. A compact optical isolator. — Optics Communications, 1982, v.43, 2, p.79-84.

7 Яворский Б.М., Детлаф А.А. Справочник по физике. М.: Наука, 1971. С.672.

Оптический вентиль, содержащий первый поляризатор, вращатель плоскости поляризации, второй поляризатор, магнитную систему, первый поляризатор, вращатель плоскости поляризации, второй поляризатор расположены последовательно на оптической оси, вращатель плоскости поляризации помещен в продольное магнитное поле магнитной системы, торцы вращателя плоскости поляризации выполнены скошенными, отличающийся тем, что он дополнительно содержит первую четвертьволновую пластину, вторую четвертьволновую пластину, N дополнительных вращателей плоскости поляризации, N дополнительных магнитных систем, первая четвертьволновая пластина расположена на оптической оси между поляризатором и вращателем плоскости поляризации, дополнительные вращатели плоскости поляризации и вторая четвертьволновая пластина последовательно расположены на оптической оси между вращателем плоскости поляризации и вторым поляризатором, i-й дополнительный вращатель плоскости поляризации помещен в продольное магнитное поле i-й дополнительной магнитной системы, торцы i-го дополнительного вращателя плоскости поляризации выполнены скошенными, где i, N — натуральные числа, причем 1iN.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *